
characteristic Documentation
Release 14.1.0

Hynek Schlawack

August 22, 2014

Contents

1 Teaser 3

2 User’s Guide 5
2.1 Why not. 5
2.2 Examples . 8
2.3 API . 10
2.4 Project Information . 14

3 Indices and tables 17

i

ii

characteristic Documentation, Release 14.1.0

Release v14.1.0 (What’s new?).

characteristic is an MIT-licensed Python package with class decorators that ease the chores of implementing
the most common attribute-related object protocols.

You just specify the attributes to work with and characteristic gives you any or all of:

• a nice human-readable __repr__,

• a complete set of comparison methods,

• immutability for attributes,

• and a kwargs-based initializer (that cooperates with your existing one and optionally even checks the types of
the arguments)

without writing dull boilerplate code again and again.

This gives you the power to use actual classes with actual types in your code instead of confusing tuples or confus-
ingly behaving namedtuples.

So put down that type-less data structures and welcome some class into your life!

characteristic’s documentation lives at Read the Docs, the code on GitHub. It’s rigorously tested on Python
2.6, 2.7, 3.3+, and PyPy.

Contents 1

http://choosealicense.com/licenses/mit/
https://characteristic.readthedocs.org/
https://github.com/hynek/characteristic

characteristic Documentation, Release 14.1.0

2 Contents

CHAPTER 1

Teaser

>>> from characteristic import Attribute, attributes
>>> @attributes(["a", "b"])
... class AClass(object):
... pass
>>> @attributes(["a", Attribute("b", default_value="abc", instance_of=str)])
... class AnotherClass(object):
... pass
>>> obj1 = AClass(a=1, b="abc")
>>> obj2 = AnotherClass(a=1, b="abc")
>>> obj3 = AnotherClass(a=1)
>>> AnotherClass(a=1, b=42)
Traceback (most recent call last):
...

TypeError: Attribute ’b’ must be an instance of ’str’.
>>> print obj1, obj2, obj3
<AClass(a=1, b=’abc’)> <AnotherClass(a=1, b=’abc’)> <AnotherClass(a=1, b=’abc’)>
>>> obj1 == obj2
False
>>> obj2 == obj3
True

3

characteristic Documentation, Release 14.1.0

4 Chapter 1. Teaser

CHAPTER 2

User’s Guide

2.1 Why not. . .

2.1.1 . . . tuples?

Readability

What makes more sense while debugging:

<Point(x=1, x=2)>

or:

(1, 2)

?

Let’s add even more ambiguity:

<Customer(id=42, reseller=23, first_name="Jane", last_name="John")>

or:

(42, 23, "Jane", "John")

?

Why would you want to write customer[2] instead of customer.first_name?

Don’t get me started when you add nesting. If you’ve never ran into mysterious tuples you had no idea what the hell
they meant while debugging, you’re much smarter then I am.

Using proper classes with names and types makes program code much more readable and comprehensible. Especially
when trying to grok a new piece of software or returning to old code after several months.

Extendability

Imagine you have a function that takes or returns a tuple. Especially if you use tuple unpacking (eg. x, y =
get_point()), adding additional data means that you have to change the invocation of that function everywhere.

Adding an attribute to a class concerns only those who actually care about that attribute.

5

http://arxiv.org/pdf/1304.5257.pdf

characteristic Documentation, Release 14.1.0

2.1.2 . . . namedtuples?

The difference between namedtuples and classes decorated by characteristic is that the latter are type-sensitive
and less typing aside regular classes:

>>> from characteristic import Attribute, attributes
>>> @attributes([Attribute("a", instance_of=int)])
... class C1(object):
... def __init__(self):
... if self.a >= 5:
... raise ValueError("’a’ must be smaller 5!")
... def print_a(self):
... print self.a
>>> @attributes([Attribute("a", instance_of=int)])
... class C2(object):
... pass
>>> c1 = C1(a=1)
>>> c2 = C2(a=1)
>>> c1.a == c2.a
True
>>> c1 == c2
False
>>> c1.print_a()
1
>>> C1(a=5)
Traceback (most recent call last):

...
ValueError: ’a’ must be smaller 5!

. . . while namedtuple’s purpose is explicitly to behave like tuples:

>>> from collections import namedtuple
>>> NT1 = namedtuple("NT1", "a")
>>> NT2 = namedtuple("NT2", "b")
>>> t1 = NT1._make([1,])
>>> t2 = NT2._make([1,])
>>> t1 == t2 == (1,)
True

This can easily lead to surprising and unintended behaviors.

Other than that, characteristic also adds nifty features like type checks or default values.

2.1.3 . . . hand-written classes?

While I’m a fan of all things artisanal, writing the same nine methods all over again doesn’t qualify for me. I usually
manage to get some typos inside and there’s simply more code that can break and thus has to be tested.

To bring it into perspective, the equivalent of

>>> @attributes(["a", "b"])
... class SmartClass(object):
... pass
>>> SmartClass(a=1, b=2)
<SmartClass(a=1, b=2)>

is

6 Chapter 2. User’s Guide

https://docs.python.org/2/library/collections.html#collections.namedtuple

characteristic Documentation, Release 14.1.0

>>> class ArtisinalClass(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
...
... def __repr__(self):
... return "<ArtisinalClass(a={}, b={})>".format(self.a, self.b)
...
... def __eq__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) == (other.a, other.b)
... else:
... return NotImplemented
...
... def __ne__(self, other):
... result = self.__eq__(other)
... if result is NotImplemented:
... return NotImplemented
... else:
... return not result
...
... def __lt__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) < (other.a, other.b)
... else:
... return NotImplemented
...
... def __le__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) <= (other.a, other.b)
... else:
... return NotImplemented
...
... def __gt__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) > (other.a, other.b)
... else:
... return NotImplemented
...
... def __ge__(self, other):
... if other.__class__ is self.__class__:
... return (self.a, self.b) >= (other.a, other.b)
... else:
... return NotImplemented
...
... def __hash__(self):
... return hash((self.a, self.b))
>>> ArtisinalClass(a=1, b=2)
<ArtisinalClass(a=1, b=2)>

which is quite a mouthful and it doesn’t even use any of characteristic‘s more advanced features like type
checks or default values Also: no tests whatsoever. And who will guarantee you, that you don’t accidentally flip the <
in your tenth implementation of __gt__?

If you don’t care and like typing, I’m not gonna stop you. But if you ever get sick of the repetitiveness,
characteristic will be waiting for you. :)

2.1. Why not. . . 7

characteristic Documentation, Release 14.1.0

2.2 Examples

@attributes together with the definition of the attributes using class attributes enhances your class by:

• a nice __repr__,

• comparison methods that compare instances as if they were tuples of their attributes,

• and an initializer that uses the keyword arguments to initialize the specified attributes before running the class’
own initializer (you just write the validator if you need anything more than type checks!).

>>> from characteristic import Attribute, attributes
>>> @attributes(["a", "b"])
... class C(object):
... pass
>>> obj1 = C(a=1, b="abc")
>>> obj1
<C(a=1, b=’abc’)>
>>> obj2 = C(a=2, b="abc")
>>> obj1 == obj2
False
>>> obj1 < obj2
True
>>> obj3 = C(a=1, b="bca")
>>> obj3 > obj1
True

To offer more power and possibilities, characteristic comes with a distinct class to define attributes:
Attribute. It allows for things like default values for certain attributes, making them optional when
characteristic‘s generated initializer is used:

>>> @attributes(["a", "b", Attribute("c", default_value=42)])
... class CWithDefaults(object):
... pass
>>> obj4 = CWithDefaults(a=1, b=2)
>>> obj5 = CWithDefaults(a=1, b=2, c=42)
>>> obj4 == obj5
True

characteristic also offers factories for default values of complex types:

>>> @attributes([Attribute("a", default_factory=list),
... Attribute("b", default_factory=dict)])
... class CWithDefaultFactory(object):
... pass
>>> obj6 = CWithDefaultFactory()
>>> obj6
<CWithDefaultFactory(a=[], b={})>
>>> obj7 = CWithDefaultFactory()
>>> obj7
<CWithDefaultFactory(a=[], b={})>
>>> obj6 == obj7
True
>>> obj6.a is obj7.a
False
>>> obj6.b is obj7.b
False

You can also exclude certain attributes from certain decorators:

8 Chapter 2. User’s Guide

characteristic Documentation, Release 14.1.0

>>> @attributes(["host", "user",
... Attribute("password", exclude_from_repr=True),
... Attribute("_connection", exclude_from_init=True)])
... class DB(object):
... _connection = None
... def connect(self):
... self._connection = "not really a connection"
>>> db = DB(host="localhost", user="dba", password="secret")
>>> db.connect()
>>> db
<DB(host=’localhost’, user=’dba’, _connection=’not really a connection’)>

Immutable data structures are amazing! Guess what characteristic supports?

>>> @attributes([Attribute("a")], apply_immutable=True)
... class ImmutableClass(object):
... pass
>>> ic = ImmutableClass(a=42)
>>> ic.a
42
>>> ic.a = 43
Traceback (most recent call last):
...

AttributeError: Attribute ’a’ of class ’ImmutableClass’ is immutable.
>>> @attributes([Attribute("a")], apply_immutable=True)
... class AnotherImmutableClass(object):
... def __init__(self):
... self.a *= 2
>>> ic2 = AnotherImmutableClass(a=21)
>>> ic2.a
42
>>> ic.a = 43
Traceback (most recent call last):
...

AttributeError: Attribute ’a’ of class ’AnotherImmutableClass’ is immutable.

You know what else is amazing? Type checks!

>>> @attributes([Attribute("a", instance_of=int)])
... class TypeCheckedClass(object):
... pass
>>> TypeCheckedClass(a="totally not an int")
Traceback (most recent call last):
...

TypeError: Attribute ’a’ must be an instance of ’int’.

And if you want your classes to have certain attributes private, characteristicwill keep your keyword arguments
clean if not told otherwise1:

>>> @attributes([Attribute("_private")])
... class CWithPrivateAttribute(object):
... pass
>>> obj8 = CWithPrivateAttribute(private=42)
>>> obj8._private
42
>>> @attributes([Attribute("_private", init_aliaser=None)])
... class CWithPrivateAttributeNoAliasing(object):

1 This works only for attributes defined using the Attribute class.

2.2. Examples 9

characteristic Documentation, Release 14.1.0

... pass
>>> obj9 = CWithPrivateAttributeNoAliasing(_private=42)
>>> obj9._private
42

2.3 API

characteristic consists of several class decorators that add features to your classes. There are four that add one
feature each to your class. And then there’s the helper @attributes that combines them all into one decorator so
you don’t have to repeat the attribute list multiple times.

Generally the decorators take a list of attributes as their first positional argument. This list can consists of either native
strings2 for simple cases or instances of Attribute that allow for more customization of characteristic‘s
behavior.

The easiest way to get started is to have a look at the Examples to get a feeling for characteristic and return
later for details!

Note: Every argument except for attrs for decorators and name for Attribute is a keyword argument. Their
positions are coincidental and not guaranteed to remain stable.

characteristic.attributes(attrs, apply_with_cmp=True, apply_with_init=True, ap-
ply_with_repr=True, apply_immutable=False, **kw)

A convenience class decorator that allows to selectively apply with_cmp(), with_repr(),
with_init(), and immutable() to avoid code duplication.

Parameters

• attrs (list of str or Attributes.) – Attributes to work with.

• apply_with_cmp (bool) – Apply with_cmp().

• apply_with_init (bool) – Apply with_init().

• apply_with_repr (bool) – Apply with_repr().

• apply_immutable (bool) – Apply immutable(). The only one that is off by default.

Raises ValueError If both defaults and an instance of Attribute has been passed.

New in version 14.0: Added possibility to pass instances of Attribute in attrs.

New in version 14.0: Added apply_*.

Deprecated since version 14.0: Use Attribute instead of defaults.

Parameters defaults (dict or None) – Default values if attributes are omitted on instantiation.

Deprecated since version 14.0: Use apply_with_init instead of create_init. Until removal, if either
if False, with_init is not applied.

Parameters create_init (bool) – Apply with_init().

characteristic.with_repr(attrs)
A class decorator that adds a human readable __repr__ method to your class using attrs.

Parameters attrs (list of str or Attributes.) – Attributes to work with.

2 Byte strings on Python 2 and Unicode strings on Python 3.

10 Chapter 2. User’s Guide

https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool

characteristic Documentation, Release 14.1.0

>>> from characteristic import with_repr
>>> @with_repr(["a", "b"])
... class RClass(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
>>> c = RClass(42, "abc")
>>> print c
<RClass(a=42, b=’abc’)>

characteristic.with_cmp(attrs)
A class decorator that adds comparison methods based on attrs.

For that, each class is treated like a tuple of the values of attrs. But only instances of identical classes are
compared!

Parameters attrs (list of str or Attributes.) – Attributes to work with.

>>> from characteristic import with_cmp
>>> @with_cmp(["a", "b"])
... class CClass(object):
... def __init__(self, a, b):
... self.a = a
... self.b = b
>>> o1 = CClass(1, "abc")
>>> o2 = CClass(1, "abc")
>>> o1 == o2 # o1.a == o2.a and o1.b == o2.b
True
>>> o1.c = 23
>>> o2.c = 42
>>> o1 == o2 # attributes that are not passed to with_cmp are ignored
True
>>> o3 = CClass(2, "abc")
>>> o1 < o3 # because 1 < 2
True
>>> o4 = CClass(1, "bca")
>>> o1 < o4 # o1.a == o4.a, but o1.b < o4.b
True

characteristic.with_init(attrs, **kw)
A class decorator that wraps the __init__ method of a class and sets attrs using passed keyword arguments
before calling the original __init__.

Those keyword arguments that are used, are removed from the kwargs that is passed into your original
__init__. Optionally, a dictionary of default values for some of attrs can be passed too.

Attributes that are defined using Attribute and start with underscores will get them stripped for the initializer
arguments by default (this behavior is changeable on per-attribute basis when instantiating Attribute.

Parameters attrs (list of str or Attributes.) – Attributes to work with.

Raises

• ValueError – If the value for a non-optional attribute hasn’t been passed as a keyword
argument.

• ValueError – If both defaults and an instance of Attribute has been passed.

Deprecated since version 14.0: Use Attribute instead of defaults.

Parameters defaults (dict or None) – Default values if attributes are omitted on instantiation.

2.3. API 11

characteristic Documentation, Release 14.1.0

>>> from characteristic import with_init, Attribute
>>> @with_init(["a",
... Attribute("b", default_factory=lambda: 2),
... Attribute("_c")])
... class IClass(object):
... def __init__(self):
... if self.b != 2:
... raise ValueError("’b’ must be 2!")
>>> o1 = IClass(a=1, b=2, c=3)
>>> o2 = IClass(a=1, c=3)
>>> o1._c
3
>>> o1.a == o2.a
True
>>> o1.b == o2.b
True
>>> IClass()
Traceback (most recent call last):
...

ValueError: Missing keyword value for ’a’.
>>> IClass(a=1, b=3) # the custom __init__ is called after the attributes are initialized
Traceback (most recent call last):
...

ValueError: ’b’ must be 2!

Note: The generated initializer explicitly does not support positional arguments. Those are always passed
to the existing __init__ unaltered. Used keyword arguments will not be passed to the original __init__
method and have to be accessed on the class (i.e. self.a).

characteristic.immutable(attrs)
Class decorator that makes attrs of a class immutable.

That means that attrs can only be set from an initializer. If anyone else tries to set one of them, an
AttributeError is raised.

New in version 14.0.

>>> from characteristic import immutable
>>> @immutable([Attribute("foo")])
... class ImmutableClass(object):
... foo = "bar"
>>> ic = ImmutableClass()
>>> ic.foo
’bar’
>>> ic.foo = "not bar"
Traceback (most recent call last):
...

AttributeError: Attribute ’foo’ of class ’ImmutableClass’ is immutable.

Please note, that that doesn’t mean that the attributes themselves are immutable too:

>>> @immutable(["foo"])
... class C(object):
... foo = []
>>> i = C()
>>> i.foo = [42]
Traceback (most recent call last):
...

12 Chapter 2. User’s Guide

characteristic Documentation, Release 14.1.0

AttributeError: Attribute ’foo’ of class ’C’ is immutable.
>>> i.foo.append(42)
>>> i.foo
[42]

class characteristic.Attribute(name, exclude_from_cmp=False, exclude_from_init=False,
exclude_from_repr=False, exclude_from_immutable=False,
default_value=NOTHING, default_factory=None, in-
stance_of=None, init_aliaser=<function strip_leading_underscores
at 0x7f8674bcdcf8>)

A representation of an attribute.

In the simplest case, it only consists of a name but more advanced properties like default values are possible too.

All attributes on the Attribute class are read-only.

Parameters

• name (str) – Name of the attribute.

• exclude_from_cmp (bool) – Ignore attribute in with_cmp().

• exclude_from_init (bool) – Ignore attribute in with_init().

• exclude_from_repr (bool) – Ignore attribute in with_repr().

• exclude_from_immutable (bool) – Ignore attribute in immutable().

• default_value – A value that is used whenever this attribute isn’t passed as an keyword
argument to a class that is decorated using with_init() (or attributes() with
apply_with_init=True).

Therefore, setting this makes an attribute optional.

Since a default value of None would be ambiguous, a special sentinel NOTHING is used.
Passing it means the lack of a default value.

• default_factory (callable) – A factory that is used for generating default values when-
ever this attribute isn’t passed as an keyword argument to a class that is decorated using
with_init() (or attributes() with apply_with_init=True).

Therefore, setting this makes an attribute optional.

• instance_of (type) – If used together with with_init() (or attributes() with
apply_with_init=True), the passed value is checked whether it’s an instance of the
type passed here. The initializer then raises TypeError on mismatch.

• init_aliaser (callable) – A callable that is invoked with the name of the attribute and
whose return value is used as the keyword argument name for the __init__ cre-
ated by with_init() (or attributes() with apply_with_init=True). Uses
strip_leading_underscores() by default to change _foo to foo. Set to None
to disable aliasing.

Raises ValueError If both default_value and default_factory have been passed.

New in version 14.0.

characteristic.strip_leading_underscores(attribute_name)
Strip leading underscores from attribute_name.

Used by default by the init_aliaser argument of Attribute.

Parameters attribute_name (str) – The original attribute name to mangle.

Return type str

2.3. API 13

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#type
https://docs.python.org/2/library/functions.html#callable
https://docs.python.org/2/library/functions.html#str

characteristic Documentation, Release 14.1.0

>>> from characteristic import strip_leading_underscores
>>> strip_leading_underscores("_foo")
’foo’
>>> strip_leading_underscores("__bar")
’bar’
>>> strip_leading_underscores("___qux")
’qux’

characteristic.NOTHING = NOTHING
Sentinel class to indicate the lack of a value when None is ambiguous.

New in version 14.0.

2.4 Project Information

2.4.1 License and Hall of Fame

characteristic is licensed under the permissive MIT license. The full license text can be also found in the source
code repository.

Authors

characteristic is written and maintained by Hynek Schlawack.

The development is kindly supported by Variomedia AG.

It’s inspired by Twisted’s FancyEqMixin but is implemented using class decorators because sub-classing is bad for
you, m’kay?

The following folks helped forming characteristic into what it is now:

• Adam Dangoor

• Glyph

• Itamar Turner-Trauring

• Jean-Paul Calderone

• Julian Berman

• Richard Wall

2.4.2 How To Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and
characteristic is no different.

To make participation as pleasant as possible, this project adheres to the Code of Conduct by the Python Software
Foundation.

Here are a few guidelines to get you started:

• Add yourself to the AUTHORS.rst file in an alphabetical fashion. Every contribution is valuable and shall be
credited.

• If your change is noteworthy, add an entry to the changelog.

14 Chapter 2. User’s Guide

http://choosealicense.com/licenses/mit/
https://github.com/hynek/characteristic/blob/master/LICENSE
https://github.com/hynek/characteristic/blob/master/LICENSE
https://hynek.me/
https://www.variomedia.de/
http://twistedmatrix.com/documents/current/api/twisted.python.util.FancyEqMixin.html
https://www.youtube.com/watch?v=3MNVP9-hglc
https://www.youtube.com/watch?v=3MNVP9-hglc
https://github.com/adamtheturtle
https://github.com/glyph
https://github.com/itamarst
https://github.com/exarkun
https://github.com/julian
https://github.com/wallrj
https://www.python.org/psf/codeofconduct/
https://github.com/hynek/characteristic/blob/master/AUTHORS.rst
https://github.com/hynek/characteristic/blob/master/docs/changelog.rst

characteristic Documentation, Release 14.1.0

• No contribution is too small; please submit as many fixes for typos and grammar bloopers as you can!

• Don’t ever break backward compatibility. If it ever has to happen for higher reasons, characteristic will
follow the proven procedures of the Twisted project.

• Always add tests and docs for your code. This is a hard rule; patches with missing tests or documentation won’t
be merged. If a feature is not tested or documented, it doesn’t exist.

• Obey PEP 8 and PEP 257.

• Write good commit messages.

Note: If you have something great but aren’t sure whether it adheres – or even can adhere – to the rules above: please
submit a pull request anyway!

In the best case, we can mold it into something, in the worst case the pull request gets politely closed. There’s
absolutely nothing to fear.

Thank you for considering to contribute to characteristic! If you have any question or concerns, feel free to
reach out to me.

2.4.3 Changelog

Versions are year-based with a strict backwards-compatibility policy. The third digit is only for regressions.

14.1.0 (2014-08-22)

Backward-incompatible changes:

none

Deprecations:

none

Changes:

• Fix stray deprecation warnings.

• Don’t rely on warnings being switched on by command line. [17]

14.0.0 (2014-08-21)

Backward-incompatible changes:

none

2.4. Project Information 15

http://twistedmatrix.com/trac/wiki/CompatibilityPolicy
http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-0257/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://github.com/hynek/characteristic/issues/17

characteristic Documentation, Release 14.1.0

Deprecations:

• The defaults argument of with_init() and attributes() has been deprecated in favor of the new
explicit Attribute class and it’s superior default_value and default_factory arguments.

• The create_init argument of attributes() has been deprecated in favor of the new
apply_with_init argument for the sake of consistency.

Changes:

• Switch to a year-based version scheme.

• Add immutable() to make certain attributes of classes immutable. Also add apply_immutable argument
to attributes(). [14]

• Add explicit Attribute class and use it for default factories. [8]

• Add aliasing of private attributes for with_init()’s initializer when used together with Attribute. Allow
for custom aliasing via a callable. [6, 13]

• Add type checks to with_init()’s initializer. [12]

• Add possibility to hand-pick which decorators are applied from within attributes().

• Add possibility to exclude single attributes from certain decorators.

0.1.0 (2014-05-11)

• Initial release.

16 Chapter 2. User’s Guide

https://github.com/hynek/characteristic/issues/14
https://github.com/hynek/characteristic/issues/8
https://github.com/hynek/characteristic/issues/6
https://github.com/hynek/characteristic/issues/13
https://github.com/hynek/characteristic/issues/13

CHAPTER 3

Indices and tables

• genindex

• search

17

	Teaser
	User's Guide
	Why not…
	Examples
	API
	Project Information

	Indices and tables

